Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем за скобки.
Этап 1.2
Вынесем члены из-под знака корня.
Этап 2
С помощью запишем в виде .
Этап 3
Этап 3.1
Умножим на .
Этап 3.1.1
Возведем в степень .
Этап 3.1.2
Применим правило степени для объединения показателей.
Этап 3.2
Запишем в виде дроби с общим знаменателем.
Этап 3.3
Объединим числители над общим знаменателем.
Этап 3.4
Добавим и .
Этап 4
Этап 4.1
Перепишем в виде .
Этап 4.2
Перемножим экспоненты в .
Этап 4.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2
Умножим .
Этап 4.2.2.1
Объединим и .
Этап 4.2.2.2
Умножим на .
Этап 4.2.3
Вынесем знак минуса перед дробью.
Этап 5
Этап 5.1
Чтобы применить цепное правило, зададим как .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Заменим все вхождения на .
Этап 6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7
Объединим и .
Этап 8
Объединим числители над общим знаменателем.
Этап 9
Этап 9.1
Умножим на .
Этап 9.2
Вычтем из .
Этап 10
Этап 10.1
Вынесем знак минуса перед дробью.
Этап 10.2
Объединим и .
Этап 10.3
Упростим выражение.
Этап 10.3.1
Перенесем влево от .
Этап 10.3.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 11
По правилу суммы производная по имеет вид .
Этап 12
Поскольку является константой относительно , производная относительно равна .
Этап 13
Добавим и .
Этап 14
Поскольку является константой относительно , производная по равна .
Этап 15
Этап 15.1
Умножим на .
Этап 15.2
Умножим на .
Этап 16
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 17
Этап 17.1
Объединим и .
Этап 17.2
Умножим на .
Этап 17.3
Объединим и .
Этап 17.4
Вынесем множитель из .
Этап 18
Этап 18.1
Вынесем множитель из .
Этап 18.2
Сократим общий множитель.
Этап 18.3
Перепишем это выражение.
Этап 19
Изменим порядок членов.