Математический анализ Примеры

Вычислим интеграл интеграл в пределах от 0 до 5 от 1/( кубический корень из 5-x) по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Перепишем.
Этап 1.1.2
Разделим на .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Вычтем из .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Вынесем знак минуса перед дробью.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 4.1
С помощью запишем в виде .
Этап 4.2
Вынесем из знаменателя, возведя в степень.
Этап 4.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Применим правило степени и перемножим показатели, .
Этап 4.3.2
Объединим и .
Этап 4.3.3
Вынесем знак минуса перед дробью.
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Объединим и .
Этап 7
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Найдем значение в и в .
Этап 7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Перепишем в виде .
Этап 7.2.2
Применим правило степени и перемножим показатели, .
Этап 7.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Сократим общий множитель.
Этап 7.2.3.2
Перепишем это выражение.
Этап 7.2.4
Возведение в любую положительную степень дает .
Этап 7.2.5
Умножим на .
Этап 7.2.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.2.6.1
Вынесем множитель из .
Этап 7.2.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.2.6.2.1
Вынесем множитель из .
Этап 7.2.6.2.2
Сократим общий множитель.
Этап 7.2.6.2.3
Перепишем это выражение.
Этап 7.2.6.2.4
Разделим на .
Этап 7.2.7
Вычтем из .
Этап 7.2.8
Умножим на .
Этап 7.2.9
Умножим на .
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 9