Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Объединим и .
Этап 7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 7.4
Объединим и .
Этап 8
По правилу суммы производная по имеет вид .
Этап 9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Поскольку является константой относительно , производная относительно равна .
Этап 11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 11.1
Добавим и .
Этап 11.2
Умножим на .
Этап 12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 13
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 14
Объединим и .
Этап 15
Объединим числители над общим знаменателем.
Этап 16
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 16.1
Умножим на .
Этап 16.2
Вычтем из .
Этап 17
Вынесем знак минуса перед дробью.
Этап 18
Объединим и .
Этап 19
Объединим и .
Этап 20
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 21
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 23
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 23.1
Умножим на .
Этап 23.2
Умножим на .
Этап 23.3
Изменим порядок множителей в .
Этап 24
Объединим числители над общим знаменателем.
Этап 25
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 25.1
Перенесем .
Этап 25.2
Применим правило степени для объединения показателей.
Этап 25.3
Объединим числители над общим знаменателем.
Этап 25.4
Добавим и .
Этап 25.5
Разделим на .
Этап 26
Упростим .
Этап 27
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 27.1
Применим правило степени для объединения показателей.
Этап 27.2
Объединим числители над общим знаменателем.
Этап 27.3
Добавим и .
Этап 27.4
Разделим на .
Этап 28
Упростим .
Этап 29
Добавим и .
Этап 30
Вынесем множитель из .
Этап 31
Вынесем множитель из .
Этап 32
Вынесем множитель из .
Этап 33
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 33.1
Вынесем множитель из .
Этап 33.2
Сократим общий множитель.
Этап 33.3
Перепишем это выражение.