Математический анализ Примеры

Trovare dx/dy y=1/( квадратный корень из x)
Этап 1
С помощью запишем в виде .
Этап 2
Продифференцируем обе части уравнения.
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 4.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель.
Этап 4.2.2.2.2
Перепишем это выражение.
Этап 4.3
Упростим.
Этап 4.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.4.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Умножим на .
Этап 4.4.2.2
Вычтем из .
Этап 4.4.2.3
Вынесем знак минуса перед дробью.
Этап 4.5
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Чтобы применить цепное правило, зададим как .
Этап 4.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.5.3
Заменим все вхождения на .
Этап 4.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.7
Объединим и .
Этап 4.8
Объединим числители над общим знаменателем.
Этап 4.9
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.9.1
Умножим на .
Этап 4.9.2
Вычтем из .
Этап 4.10
Вынесем знак минуса перед дробью.
Этап 4.11
Объединим и .
Этап 4.12
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.13
Перепишем в виде .
Этап 4.14
Объединим и .
Этап 4.15
Перепишем в виде произведения.
Этап 4.16
Умножим на .
Этап 4.17
Возведем в степень .
Этап 4.18
Применим правило степени для объединения показателей.
Этап 4.19
Запишем в виде дроби с общим знаменателем.
Этап 4.20
Объединим числители над общим знаменателем.
Этап 4.21
Добавим и .
Этап 5
Преобразуем уравнение, приравняв левую часть к правой.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Разделим каждый член на .
Этап 6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.2.2.2
Разделим на .
Этап 6.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Разделим на .
Этап 6.3
Умножим обе части на .
Этап 6.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.4.1.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.4.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.1.1.2.1
Сократим общий множитель.
Этап 6.4.1.1.2.2
Перепишем это выражение.
Этап 6.4.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.1.1.3.1
Сократим общий множитель.
Этап 6.4.1.1.3.2
Перепишем это выражение.
Этап 6.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Умножим на .
Этап 7
Заменим на .