Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Возведем в степень .
Этап 3
Вынесем за скобки.
Этап 4
Используя формулы Пифагора, запишем в виде .
Этап 5
Упростим.
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Производная по равна .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Разделим данный интеграл на несколько интегралов.
Этап 8
Применим правило дифференцирования постоянных функций.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Этап 10.1
Объединим и .
Этап 10.2
Упростим.
Этап 11
Заменим все вхождения на .