Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вынесем знак минуса перед дробью.
Этап 1.2
Вынесем знак минуса перед дробью.
Этап 2
Умножим числитель первой дроби на знаменатель второй дроби. Приравняем результат к произведению знаменателя первой дроби и числителя второй дроби.
Этап 3
Этап 3.1
Разделим каждый член на и упростим.
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Этап 3.1.2.1
Сократим выражение, путем отбрасывания общих множителей.
Этап 3.1.2.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.1.2
Разделим на .
Этап 3.1.2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.1.2.2.1
Применим свойство дистрибутивности.
Этап 3.1.2.2.2
Применим свойство дистрибутивности.
Этап 3.1.2.2.3
Применим свойство дистрибутивности.
Этап 3.1.2.3
Упростим и объединим подобные члены.
Этап 3.1.2.3.1
Упростим каждый член.
Этап 3.1.2.3.1.1
Умножим на .
Этап 3.1.2.3.1.2
Перенесем влево от .
Этап 3.1.2.3.1.3
Умножим на .
Этап 3.1.2.3.2
Вычтем из .
Этап 3.1.3
Упростим правую часть.
Этап 3.1.3.1
Вынесем знак минуса из знаменателя .
Этап 3.1.3.2
Перепишем в виде .
Этап 3.1.3.3
Умножим .
Этап 3.1.3.3.1
Умножим на .
Этап 3.1.3.3.2
Умножим на .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Вычтем из .
Этап 3.4
Разложим на множители, используя метод группировки.
Этап 3.4.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.4.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.6
Приравняем к , затем решим относительно .
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Добавим к обеим частям уравнения.
Этап 3.7
Приравняем к , затем решим относительно .
Этап 3.7.1
Приравняем к .
Этап 3.7.2
Добавим к обеим частям уравнения.
Этап 3.8
Окончательным решением являются все значения, при которых верно.