Алгебра Примеры

Решить через дискриминант 2/(x-3)+x/2=-1/2
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Объединим и .
Этап 3.2.1.2.2
Умножим на .
Этап 3.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.1
Сократим общий множитель.
Этап 3.2.1.3.2
Перепишем это выражение.
Этап 3.2.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.5.1
Сократим общий множитель.
Этап 3.2.1.5.2
Перепишем это выражение.
Этап 3.2.1.6
Применим свойство дистрибутивности.
Этап 3.2.1.7
Умножим на .
Этап 3.2.1.8
Перенесем влево от .
Этап 3.2.1.9
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.9.1
Сократим общий множитель.
Этап 3.2.1.9.2
Перепишем это выражение.
Этап 3.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Вычтем из .
Этап 3.2.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Применим свойство дистрибутивности.
Этап 3.3.2
Умножим.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Умножим на .
Этап 3.3.2.2
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перепишем в виде .
Этап 4.1.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 4.1.3
Перепишем многочлен.
Этап 4.1.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4.2
Приравняем к .
Этап 4.3
Добавим к обеим частям уравнения.