Введите задачу...
Алгебра Примеры
Этап 1
Обратную матрицу можно найти, используя формулу , где является определителем.
Этап 2
Этап 2.1
Определитель матрицы можно найти, используя формулу .
Этап 2.2
Умножим на .
Этап 3
Так как определитель отличен от нуля, существует обратная матрица.
Этап 4
Подставим известные значения в формулу для обратной матрицы.
Этап 5
Этап 5.1
Вынесем множитель из .
Этап 5.2
Вынесем множитель из .
Этап 5.3
Вынесем множитель из .
Этап 6
Умножим на каждый элемент матрицы.
Этап 7
Этап 7.1
Сократим общий множитель .
Этап 7.1.1
Вынесем множитель из .
Этап 7.1.2
Сократим общий множитель.
Этап 7.1.3
Перепишем это выражение.
Этап 7.2
Объединим и .
Этап 7.3
Перепишем, используя свойство коммутативности умножения.
Этап 7.4
Объединим и .
Этап 7.5
Сократим общий множитель .
Этап 7.5.1
Вынесем множитель из .
Этап 7.5.2
Сократим общий множитель.
Этап 7.5.3
Перепишем это выражение.
Этап 7.6
Объединим и .
Этап 7.7
Вынесем знак минуса перед дробью.
Этап 7.8
Объединим и .