Введите задачу...
Алгебра Примеры
Этап 1
Поменяем переменные местами.
Этап 2
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Упростим каждый член.
Этап 2.3.3.1.1
Сократим общий множитель и .
Этап 2.3.3.1.1.1
Вынесем множитель из .
Этап 2.3.3.1.1.2
Сократим общие множители.
Этап 2.3.3.1.1.2.1
Вынесем множитель из .
Этап 2.3.3.1.1.2.2
Сократим общий множитель.
Этап 2.3.3.1.1.2.3
Перепишем это выражение.
Этап 2.3.3.1.2
Вынесем знак минуса перед дробью.
Этап 2.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.5
Упростим .
Этап 2.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.5.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 2.5.2.1
Умножим на .
Этап 2.5.2.2
Умножим на .
Этап 2.5.3
Объединим числители над общим знаменателем.
Этап 2.5.4
Перепишем в виде .
Этап 2.5.4.1
Вынесем полную степень из .
Этап 2.5.4.2
Вынесем полную степень из .
Этап 2.5.4.3
Перегруппируем дробь .
Этап 2.5.5
Вынесем члены из-под знака корня.
Этап 2.5.6
Объединим и .
Этап 2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Заменим на , чтобы получить окончательный ответ.
Этап 4
Этап 4.1
Область определения обратной функции — это множество значений исходной функции, и наоборот. Найдем область определения и множество значений и и сравним их.
Этап 4.2
Найдем множество значений .
Этап 4.2.1
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Этап 4.3
Найдем область определения .
Этап 4.3.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4.3.2
Добавим к обеим частям неравенства.
Этап 4.3.3
Область определения ― это все значения , при которых выражение определено.
Этап 4.4
Найдем область определения .
Этап 4.4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4.5
Так как область определения представляет множество значений, определяемых уравнением , а множество значений, определяемое уравнениями , представляет область определения , то — обратная к .
Этап 5