Алгебра Примеры

Решить с помощью дополнения до полного квадрата (x+7)(x-9)=25
Этап 1
Упростим уравнение, выделив полный квадрат.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.2
Применим свойство дистрибутивности.
Этап 1.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Умножим на .
Этап 1.1.2.1.2
Перенесем влево от .
Этап 1.1.2.1.3
Умножим на .
Этап 1.1.2.2
Добавим и .
Этап 1.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Добавим к обеим частям уравнения.
Этап 1.2.2
Добавим и .
Этап 2
Чтобы получить квадратный трехчлен в левой части уравнение, найдем значение, равное квадрату половины .
Этап 3
Прибавим это слагаемое к каждой части уравнения.
Этап 4
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Возведем в степень .
Этап 4.2.1.2
Добавим и .
Этап 5
Разложим полный квадрат трехчлена на .
Этап 6
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.2
Добавим к обеим частям уравнения.
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: