Введите задачу...
Алгебра Примеры
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Применим правило дифференцирования постоянных функций.
Этап 12
Этап 12.1
Упростим.
Этап 12.1.1
Объединим и .
Этап 12.1.2
Объединим и .
Этап 12.1.3
Объединим и .
Этап 12.1.4
Объединим и .
Этап 12.2
Упростим.