Алгебра Примеры

Определить экспоненциальную функцию (-1,1/5)
Этап 1
Чтобы найти экспоненциальную функцию, , график которой проходит через заданную точку, приравняем функцию значению , в заданной точке, а приравняем значению , в заданной точке.
Этап 2
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.3
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.3.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 2.3.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.3.5
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.3.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.3.7
Множителем является само значение .
встречается раз.
Этап 2.3.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.3.9
НОК представляет собой произведение числовой части и переменной части.
Этап 2.4
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Умножим каждый член на .
Этап 2.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.4.2.2
Объединим и .
Этап 2.4.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1
Сократим общий множитель.
Этап 2.4.2.3.2
Перепишем это выражение.
Этап 2.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.3.1.1
Вынесем множитель из .
Этап 2.4.3.1.2
Сократим общий множитель.
Этап 2.4.3.1.3
Перепишем это выражение.
Этап 2.5
Перепишем уравнение в виде .
Этап 3
Подставим каждое значение в функцию , чтобы найти каждую возможную экспоненциальную функцию.