Введите задачу...
Алгебра Примеры
,
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.3
Упростим .
Этап 1.3.1
Перепишем в виде .
Этап 1.3.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.4.2
Добавим к обеим частям уравнения.
Этап 1.4.3
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.4.4
Добавим к обеим частям уравнения.
Этап 1.4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2
Этап 2.1
Упростим .
Этап 2.1.1
Изменим порядок и .
Этап 2.1.2
Изменим порядок и .
Этап 2.2
Заменим все вхождения на во всех уравнениях.
Этап 2.2.1
Заменим все вхождения в на .
Этап 2.2.2
Упростим левую часть.
Этап 2.2.2.1
Упростим .
Этап 2.2.2.1.1
Упростим каждый член.
Этап 2.2.2.1.1.1
Перепишем в виде .
Этап 2.2.2.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.2.2.1.1.2.1
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.2.2
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.2.3
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.3
Упростим и объединим подобные члены.
Этап 2.2.2.1.1.3.1
Упростим каждый член.
Этап 2.2.2.1.1.3.1.1
Умножим .
Этап 2.2.2.1.1.3.1.1.1
Возведем в степень .
Этап 2.2.2.1.1.3.1.1.2
Возведем в степень .
Этап 2.2.2.1.1.3.1.1.3
Применим правило степени для объединения показателей.
Этап 2.2.2.1.1.3.1.1.4
Добавим и .
Этап 2.2.2.1.1.3.1.2
Перепишем в виде .
Этап 2.2.2.1.1.3.1.2.1
С помощью запишем в виде .
Этап 2.2.2.1.1.3.1.2.2
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.1.3.1.2.3
Объединим и .
Этап 2.2.2.1.1.3.1.2.4
Сократим общий множитель .
Этап 2.2.2.1.1.3.1.2.4.1
Сократим общий множитель.
Этап 2.2.2.1.1.3.1.2.4.2
Перепишем это выражение.
Этап 2.2.2.1.1.3.1.2.5
Упростим.
Этап 2.2.2.1.1.3.1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.2.2.1.1.3.1.3.1
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.3.1.3.2
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.3.1.3.3
Применим свойство дистрибутивности.
Этап 2.2.2.1.1.3.1.4
Упростим и объединим подобные члены.
Этап 2.2.2.1.1.3.1.4.1
Упростим каждый член.
Этап 2.2.2.1.1.3.1.4.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.2.1.1.3.1.4.1.2
Умножим на , сложив экспоненты.
Этап 2.2.2.1.1.3.1.4.1.2.1
Перенесем .
Этап 2.2.2.1.1.3.1.4.1.2.2
Умножим на .
Этап 2.2.2.1.1.3.1.4.1.3
Умножим на .
Этап 2.2.2.1.1.3.1.4.1.4
Умножим на .
Этап 2.2.2.1.1.3.1.4.1.5
Умножим на .
Этап 2.2.2.1.1.3.1.4.2
Вычтем из .
Этап 2.2.2.1.1.3.1.4.3
Добавим и .
Этап 2.2.2.1.1.3.1.5
Перенесем влево от .
Этап 2.2.2.1.1.3.1.6
Умножим на .
Этап 2.2.2.1.1.3.2
Добавим и .
Этап 2.2.2.1.1.3.3
Добавим и .
Этап 2.2.2.1.2
Добавим и .
Этап 2.3
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Нет решения
Нет решения
Этап 3
Этап 3.1
Упростим .
Этап 3.1.1
Изменим порядок и .
Этап 3.1.2
Изменим порядок и .
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Перепишем в виде .
Этап 3.2.2.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.2.2.1.1.2.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2.3
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3
Упростим и объединим подобные члены.
Этап 3.2.2.1.1.3.1
Упростим каждый член.
Этап 3.2.2.1.1.3.1.1
Умножим .
Этап 3.2.2.1.1.3.1.1.1
Умножим на .
Этап 3.2.2.1.1.3.1.1.2
Умножим на .
Этап 3.2.2.1.1.3.1.1.3
Возведем в степень .
Этап 3.2.2.1.1.3.1.1.4
Возведем в степень .
Этап 3.2.2.1.1.3.1.1.5
Применим правило степени для объединения показателей.
Этап 3.2.2.1.1.3.1.1.6
Добавим и .
Этап 3.2.2.1.1.3.1.2
Перепишем в виде .
Этап 3.2.2.1.1.3.1.2.1
С помощью запишем в виде .
Этап 3.2.2.1.1.3.1.2.2
Применим правило степени и перемножим показатели, .
Этап 3.2.2.1.1.3.1.2.3
Объединим и .
Этап 3.2.2.1.1.3.1.2.4
Сократим общий множитель .
Этап 3.2.2.1.1.3.1.2.4.1
Сократим общий множитель.
Этап 3.2.2.1.1.3.1.2.4.2
Перепишем это выражение.
Этап 3.2.2.1.1.3.1.2.5
Упростим.
Этап 3.2.2.1.1.3.1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.2.2.1.1.3.1.3.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3.1.3.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3.1.3.3
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3.1.4
Упростим и объединим подобные члены.
Этап 3.2.2.1.1.3.1.4.1
Упростим каждый член.
Этап 3.2.2.1.1.3.1.4.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2.1.1.3.1.4.1.2
Умножим на , сложив экспоненты.
Этап 3.2.2.1.1.3.1.4.1.2.1
Перенесем .
Этап 3.2.2.1.1.3.1.4.1.2.2
Умножим на .
Этап 3.2.2.1.1.3.1.4.1.3
Умножим на .
Этап 3.2.2.1.1.3.1.4.1.4
Умножим на .
Этап 3.2.2.1.1.3.1.4.1.5
Умножим на .
Этап 3.2.2.1.1.3.1.4.2
Вычтем из .
Этап 3.2.2.1.1.3.1.4.3
Добавим и .
Этап 3.2.2.1.1.3.1.5
Умножим на .
Этап 3.2.2.1.1.3.1.6
Умножим на .
Этап 3.2.2.1.1.3.1.7
Умножим на .
Этап 3.2.2.1.1.3.2
Добавим и .
Этап 3.2.2.1.1.3.3
Вычтем из .
Этап 3.2.2.1.2
Добавим и .
Этап 3.3
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим каждый член.
Этап 3.4.2.1.1
Добавим и .
Этап 3.4.2.1.2
Умножим на .
Этап 3.4.2.1.3
Добавим и .
Этап 3.4.2.1.4
Умножим на .
Этап 3.5
Заменим все вхождения на во всех уравнениях.
Этап 3.5.1
Заменим все вхождения в на .
Этап 3.5.2
Упростим правую часть.
Этап 3.5.2.1
Упростим каждый член.
Этап 3.5.2.1.1
Добавим и .
Этап 3.5.2.1.2
Умножим на .
Этап 3.5.2.1.3
Добавим и .
Этап 3.5.2.1.4
Умножим на .
Этап 4
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 5
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 6