Введите задачу...
Алгебра Примеры
Этап 1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 3
Подставим возможные корни поочередно в многочлен, чтобы найти фактические корни. Упростим и убедимся, что это значение равно , значит, это корень.
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Применим правило умножения к .
Этап 4.1.2
Возведем в степень .
Этап 4.1.3
Возведем в степень .
Этап 4.1.4
Сократим общий множитель .
Этап 4.1.4.1
Вынесем множитель из .
Этап 4.1.4.2
Сократим общий множитель.
Этап 4.1.4.3
Перепишем это выражение.
Этап 4.1.5
Применим правило умножения к .
Этап 4.1.6
Возведем в степень .
Этап 4.1.7
Возведем в степень .
Этап 4.1.8
Умножим .
Этап 4.1.8.1
Объединим и .
Этап 4.1.8.2
Умножим на .
Этап 4.1.9
Вынесем знак минуса перед дробью.
Этап 4.1.10
Сократим общий множитель .
Этап 4.1.10.1
Вынесем множитель из .
Этап 4.1.10.2
Сократим общий множитель.
Этап 4.1.10.3
Перепишем это выражение.
Этап 4.1.11
Умножим на .
Этап 4.2
Объединим дроби.
Этап 4.2.1
Объединим числители над общим знаменателем.
Этап 4.2.2
Вычтем из .
Этап 4.3
Найдем общий знаменатель.
Этап 4.3.1
Запишем в виде дроби со знаменателем .
Этап 4.3.2
Умножим на .
Этап 4.3.3
Умножим на .
Этап 4.3.4
Запишем в виде дроби со знаменателем .
Этап 4.3.5
Умножим на .
Этап 4.3.6
Умножим на .
Этап 4.4
Объединим числители над общим знаменателем.
Этап 4.5
Упростим каждый член.
Этап 4.5.1
Умножим на .
Этап 4.5.2
Умножим на .
Этап 4.6
Упростим выражение.
Этап 4.6.1
Добавим и .
Этап 4.6.2
Разделим на .
Этап 5
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 6
Этап 6.1
Поместим числа, представляющие делитель и делимое, в конфигурацию для деления.
Этап 6.2
Первое число в делимом помещается в первую позицию области результата (ниже горизонтальной линии).
Этап 6.3
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.4
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.5
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.6
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.7
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.8
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.9
Все числа, кроме последнего, становятся коэффициентами фактор-многочлена. Последнее значение в строке результатов — это остаток.
Этап 6.10
Упростим частное многочленов.
Этап 7
Этап 7.1
Вынесем множитель из .
Этап 7.2
Вынесем множитель из .
Этап 7.3
Вынесем множитель из .
Этап 8
Перепишем в виде .
Этап 9
Этап 9.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 9.2
Избавимся от ненужных скобок.
Этап 10
Этап 10.1
Вынесем наибольший общий делитель из каждой группы.
Этап 10.1.1
Сгруппируем первые два члена и последние два члена.
Этап 10.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 10.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 10.3
Перепишем в виде .
Этап 10.4
Разложим на множители.
Этап 10.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 10.4.2
Избавимся от ненужных скобок.
Этап 11
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 12
Этап 12.1
Приравняем к .
Этап 12.2
Решим относительно .
Этап 12.2.1
Добавим к обеим частям уравнения.
Этап 12.2.2
Разделим каждый член на и упростим.
Этап 12.2.2.1
Разделим каждый член на .
Этап 12.2.2.2
Упростим левую часть.
Этап 12.2.2.2.1
Сократим общий множитель .
Этап 12.2.2.2.1.1
Сократим общий множитель.
Этап 12.2.2.2.1.2
Разделим на .
Этап 13
Этап 13.1
Приравняем к .
Этап 13.2
Вычтем из обеих частей уравнения.
Этап 14
Этап 14.1
Приравняем к .
Этап 14.2
Добавим к обеим частям уравнения.
Этап 15
Окончательным решением являются все значения, при которых верно.
Этап 16