Введите задачу...
Алгебра Примеры
Этап 1
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это общее уравнение гиперболы. Используем его для определения эксцентриситета.
Этап 3
Сопоставим параметры гиперболы со значениями в стандартной форме. Переменная представляет сдвиг по оси X от начала координат, — сдвиг по оси Y от начала координат, .
Этап 4
Найдем эксцентриситет по приведенной ниже формуле.
Этап 5
Подставим значения и в формулу.
Этап 6
Этап 6.1
Упростим числитель.
Этап 6.1.1
Возведем в степень .
Этап 6.1.2
Применим правило умножения к .
Этап 6.1.3
Возведем в степень .
Этап 6.1.4
Перепишем в виде .
Этап 6.1.4.1
С помощью запишем в виде .
Этап 6.1.4.2
Применим правило степени и перемножим показатели, .
Этап 6.1.4.3
Объединим и .
Этап 6.1.4.4
Сократим общий множитель .
Этап 6.1.4.4.1
Сократим общий множитель.
Этап 6.1.4.4.2
Перепишем это выражение.
Этап 6.1.4.5
Найдем экспоненту.
Этап 6.1.5
Умножим на .
Этап 6.1.6
Добавим и .
Этап 6.1.7
Перепишем в виде .
Этап 6.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.2
Сократим общий множитель и .
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Сократим общие множители.
Этап 6.2.2.1
Вынесем множитель из .
Этап 6.2.2.2
Сократим общий множитель.
Этап 6.2.2.3
Перепишем это выражение.
Этап 7