Введите задачу...
Алгебра Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем первую производную.
Этап 2.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.4
Упростим.
Этап 2.1.4.1
Изменим порядок членов.
Этап 2.1.4.2
Изменим порядок множителей в .
Этап 2.2
Первая производная по равна .
Этап 3
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Вынесем множитель из .
Этап 3.2.1
Вынесем множитель из .
Этап 3.2.2
Вынесем множитель из .
Этап 3.2.3
Вынесем множитель из .
Этап 3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4
Приравняем к , затем решим относительно .
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Этап 3.4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4.2.2
Упростим .
Этап 3.4.2.2.1
Перепишем в виде .
Этап 3.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.4.2.2.3
Плюс или минус равно .
Этап 3.5
Приравняем к , затем решим относительно .
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Решим относительно .
Этап 3.5.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 3.5.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 3.5.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 3.6
Приравняем к , затем решим относительно .
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Вычтем из обеих частей уравнения.
Этап 3.7
Окончательным решением являются все значения, при которых верно.
Этап 4
Значения, при которых производная равна : .
Этап 5
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.3
Объединим и .
Этап 6.2.1.4
Вынесем знак минуса перед дробью.
Этап 6.2.1.5
Возведем в степень .
Этап 6.2.1.6
Умножим на .
Этап 6.2.1.7
Перепишем выражение, используя правило отрицательных степеней .
Этап 6.2.1.8
Объединим и .
Этап 6.2.2
Объединим дроби.
Этап 6.2.2.1
Объединим числители над общим знаменателем.
Этап 6.2.2.2
Упростим выражение.
Этап 6.2.2.2.1
Добавим и .
Этап 6.2.2.2.2
Вынесем знак минуса перед дробью.
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим каждый член.
Этап 7.2.1.1
Применим правило степени для распределения показателей.
Этап 7.2.1.1.1
Применим правило умножения к .
Этап 7.2.1.1.2
Применим правило умножения к .
Этап 7.2.1.2
Возведем в степень .
Этап 7.2.1.3
Возведем в степень .
Этап 7.2.1.4
Возведем в степень .
Этап 7.2.1.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 7.2.1.6
Умножим на .
Этап 7.2.1.7
Перенесем влево от .
Этап 7.2.1.8
Применим правило степени для распределения показателей.
Этап 7.2.1.8.1
Применим правило умножения к .
Этап 7.2.1.8.2
Применим правило умножения к .
Этап 7.2.1.9
Возведем в степень .
Этап 7.2.1.10
Умножим на .
Этап 7.2.1.11
Возведем в степень .
Этап 7.2.1.12
Возведем в степень .
Этап 7.2.1.13
Умножим .
Этап 7.2.1.13.1
Объединим и .
Этап 7.2.1.13.2
Умножим на .
Этап 7.2.1.14
Перепишем выражение, используя правило отрицательных степеней .
Этап 7.2.1.15
Объединим.
Этап 7.2.1.16
Умножим на .
Этап 7.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 7.2.3.1
Умножим на .
Этап 7.2.3.2
Умножим на .
Этап 7.2.4
Объединим числители над общим знаменателем.
Этап 7.2.5
Упростим числитель.
Этап 7.2.5.1
Умножим на .
Этап 7.2.5.2
Добавим и .
Этап 7.2.6
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Этап 8.2.1
Упростим каждый член.
Этап 8.2.1.1
Единица в любой степени равна единице.
Этап 8.2.1.2
Умножим на .
Этап 8.2.1.3
Упростим.
Этап 8.2.1.4
Единица в любой степени равна единице.
Этап 8.2.1.5
Умножим на .
Этап 8.2.1.6
Упростим.
Этап 8.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 10