Алгебра Примеры

Найти фокус 3x^2+y^2+3x-21/4=0
Этап 1
Найдем стандартную форму уравнения эллипса.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель.
Этап 1.2.3.2.2
Перепишем это выражение.
Этап 1.2.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Вынесем множитель из .
Этап 1.2.4.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.2.1
Вынесем множитель из .
Этап 1.2.4.2.1.2.2
Сократим общий множитель.
Этап 1.2.4.2.1.2.3
Перепишем это выражение.
Этап 1.2.4.2.2
Вычтем из .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Подставим вместо в уравнение .
Этап 1.4
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Объединим числители над общим знаменателем.
Этап 1.5.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Добавим и .
Этап 1.5.2.2
Разделим на .
Этап 1.6
Разделим каждый член на , чтобы правая часть была равна единице.
Этап 1.7
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула эллипса. Используем эту формулу для определения центра, большой и малой осей эллипса.
Этап 3
Сопоставим параметры эллипса со значениями в стандартной форме. Переменная представляет большую ось эллипса,  — малую ось,  — сдвиг по оси X от начала координат, а  — сдвиг по оси Y от начала координат.
Этап 4
Найдем , расстояние от центра до фокуса.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем расстояние от центра до фокуса эллипса, используя следующую формулу.
Этап 4.2
Подставим значения и в формулу.
Этап 4.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
С помощью запишем в виде .
Этап 4.3.1.2
Применим правило степени и перемножим показатели, .
Этап 4.3.1.3
Объединим и .
Этап 4.3.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.1.4.1
Сократим общий множитель.
Этап 4.3.1.4.2
Перепишем это выражение.
Этап 4.3.1.5
Найдем экспоненту.
Этап 4.3.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
С помощью запишем в виде .
Этап 4.3.2.2
Применим правило степени и перемножим показатели, .
Этап 4.3.2.3
Объединим и .
Этап 4.3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.2.4.1
Сократим общий множитель.
Этап 4.3.2.4.2
Перепишем это выражение.
Этап 4.3.2.5
Найдем экспоненту.
Этап 4.3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Умножим на .
Этап 4.3.3.2
Вычтем из .
Этап 4.3.3.3
Перепишем в виде .
Этап 4.3.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5
Найдем фокусы.
Нажмите для увеличения количества этапов...
Этап 5.1
Первый фокус эллипса можно найти, добавив к .
Этап 5.2
Подставим известные значения , и в формулу.
Этап 5.3
Упростим.
Этап 5.4
Первый фокус эллипса можно найти, вычтя из .
Этап 5.5
Подставим известные значения , и в формулу.
Этап 5.6
Упростим.
Этап 5.7
Эллипсы имеют два фокуса.
:
:
:
:
Этап 6