Алгебра Примеры

Решить с помощью разложения на множители x^3+3x^2=24x+72
Этап 1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 6.2.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1.1
Вынесем множитель из .
Этап 6.2.3.1.2
Перепишем в виде .
Этап 6.2.3.2
Вынесем члены из-под знака корня.
Этап 6.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: