Алгебра Примеры

Trovare la Derivata - d/dx y=(e^(3x))/( натуральный логарифм от 5x)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 3.3.2
Перенесем влево от .
Этап 4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Производная по равна .
Этап 4.3
Заменим все вхождения на .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Поскольку является константой относительно , производная по равна .
Этап 5.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Объединим и .
Этап 5.3.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Вынесем множитель из .
Этап 5.3.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.1
Вынесем множитель из .
Этап 5.3.3.2.2
Сократим общий множитель.
Этап 5.3.3.2.3
Перепишем это выражение.
Этап 5.3.4
Вынесем знак минуса перед дробью.
Этап 5.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.5
Умножим на .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.1.2
Упростим путем переноса под логарифм.
Этап 6.1.1.3
Применим правило умножения к .
Этап 6.1.1.4
Возведем в степень .
Этап 6.1.2
Изменим порядок множителей в .
Этап 6.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Вынесем множитель из .
Этап 6.2.1.2
Вынесем множитель из .
Этап 6.2.1.3
Вынесем множитель из .
Этап 6.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.3
Объединим числители над общим знаменателем.
Этап 6.3
Объединим и .
Этап 6.4
Умножим числитель на величину, обратную знаменателю.
Этап 6.5
Объединим.
Этап 6.6
Умножим на .
Этап 6.7
Изменим порядок множителей в .