Введите задачу...
Алгебра Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Этап 7.1
Объединим и .
Этап 7.2
Объединим и .
Этап 8
По правилу суммы производная по имеет вид .
Этап 9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Поскольку является константой относительно , производная относительно равна .
Этап 11
Этап 11.1
Добавим и .
Этап 11.2
Объединим и .
Этап 11.3
Умножим на .
Этап 11.4
Объединим и .
Этап 12
Этап 12.1
Перенесем .
Этап 12.2
Применим правило степени для объединения показателей.
Этап 12.3
Добавим и .
Этап 13
Вынесем множитель из .
Этап 14
Этап 14.1
Вынесем множитель из .
Этап 14.2
Сократим общий множитель.
Этап 14.3
Перепишем это выражение.
Этап 14.4
Разделим на .
Этап 15
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 16
Этап 16.1
Перенесем влево от .
Этап 16.2
Изменим порядок членов.