Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Разложим на множители, используя метод группировки.
Этап 2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 2.4.1
Умножим на .
Этап 2.4.2
Умножим на .
Этап 2.4.3
Изменим порядок множителей в .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Объединим числители над общим знаменателем.
Этап 2.7
Упростим каждый член.
Этап 2.7.1
Применим свойство дистрибутивности.
Этап 2.7.2
Умножим на .
Этап 2.7.3
Умножим на .
Этап 2.7.4
Применим свойство дистрибутивности.
Этап 2.7.5
Умножим на .
Этап 2.8
Объединим противоположные члены в .
Этап 2.8.1
Вычтем из .
Этап 2.8.2
Добавим и .
Этап 2.9
Разложим на множители, используя метод группировки.
Этап 2.9.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.9.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.10
Сократим общий множитель .
Этап 2.10.1
Сократим общий множитель.
Этап 2.10.2
Перепишем это выражение.
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Вычтем из обеих частей уравнения.
Этап 5