Алгебра Примеры

Найти эксцентриситет ((x-5)^2)/8+((y+1)^2)/12=1
Этап 1
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула эллипса. Используем эту формулу для определения центра, большой и малой осей эллипса.
Этап 3
Сопоставим параметры эллипса со значениями в стандартной форме. Переменная представляет большую ось эллипса,  — малую ось,  — сдвиг по оси X от начала координат, а  — сдвиг по оси Y от начала координат.
Этап 4
Найдем эксцентриситет по приведенной ниже формуле.
Этап 5
Подставим значения и в формулу.
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Применим правило умножения к .
Этап 6.1.2
Возведем в степень .
Этап 6.1.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
С помощью запишем в виде .
Этап 6.1.3.2
Применим правило степени и перемножим показатели, .
Этап 6.1.3.3
Объединим и .
Этап 6.1.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.3.4.1
Сократим общий множитель.
Этап 6.1.3.4.2
Перепишем это выражение.
Этап 6.1.3.5
Найдем экспоненту.
Этап 6.1.4
Умножим на .
Этап 6.1.5
Применим правило умножения к .
Этап 6.1.6
Возведем в степень .
Этап 6.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.7.1
С помощью запишем в виде .
Этап 6.1.7.2
Применим правило степени и перемножим показатели, .
Этап 6.1.7.3
Объединим и .
Этап 6.1.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.7.4.1
Сократим общий множитель.
Этап 6.1.7.4.2
Перепишем это выражение.
Этап 6.1.7.5
Найдем экспоненту.
Этап 6.1.8
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.1.8.1
Умножим на .
Этап 6.1.8.2
Умножим на .
Этап 6.1.9
Вычтем из .
Этап 6.1.10
Перепишем в виде .
Этап 6.1.11
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель.
Этап 6.2.2
Перепишем это выражение.
Этап 6.3
Умножим на .
Этап 6.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.4.1
Умножим на .
Этап 6.4.2
Возведем в степень .
Этап 6.4.3
Возведем в степень .
Этап 6.4.4
Применим правило степени для объединения показателей.
Этап 6.4.5
Добавим и .
Этап 6.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.4.6.1
С помощью запишем в виде .
Этап 6.4.6.2
Применим правило степени и перемножим показатели, .
Этап 6.4.6.3
Объединим и .
Этап 6.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.6.4.1
Сократим общий множитель.
Этап 6.4.6.4.2
Перепишем это выражение.
Этап 6.4.6.5
Найдем экспоненту.
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 8