Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Перенесем все члены без в правую часть уравнения.
Этап 1.1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.1.2
Добавим к обеим частям уравнения.
Этап 1.1.1.3
Вычтем из обеих частей уравнения.
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Сократим общий множитель .
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.2
Сократим общий множитель и .
Этап 1.1.2.3.1.2.1
Вынесем множитель из .
Этап 1.1.2.3.1.2.2
Сократим общие множители.
Этап 1.1.2.3.1.2.2.1
Вынесем множитель из .
Этап 1.1.2.3.1.2.2.2
Сократим общий множитель.
Этап 1.1.2.3.1.2.2.3
Перепишем это выражение.
Этап 1.1.2.3.1.3
Вынесем знак минуса перед дробью.
Этап 1.1.2.3.1.4
Деление двух отрицательных значений дает положительное значение.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.2
Объединим и .
Этап 1.2.3.2.3
Сократим общий множитель и .
Этап 1.2.3.2.3.1
Вынесем множитель из .
Этап 1.2.3.2.3.2
Сократим общие множители.
Этап 1.2.3.2.3.2.1
Вынесем множитель из .
Этап 1.2.3.2.3.2.2
Сократим общий множитель.
Этап 1.2.3.2.3.2.3
Перепишем это выражение.
Этап 1.2.3.2.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.5
Сократим общий множитель .
Этап 1.2.3.2.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.3.2.5.2
Вынесем множитель из .
Этап 1.2.3.2.5.3
Сократим общий множитель.
Этап 1.2.3.2.5.4
Перепишем это выражение.
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Упростим числитель.
Этап 1.2.4.2.1.1.1
Применим правило умножения к .
Этап 1.2.4.2.1.1.2
Возведем в степень .
Этап 1.2.4.2.1.1.3
Применим правило умножения к .
Этап 1.2.4.2.1.1.4
Возведем в степень .
Этап 1.2.4.2.1.1.5
Возведем в степень .
Этап 1.2.4.2.1.1.6
Умножим на .
Этап 1.2.4.2.1.2
Объединим и .
Этап 1.2.4.2.1.3
Разделим на .
Этап 1.2.4.2.1.4
Разделим на .
Этап 1.2.4.2.2
Объединим числители над общим знаменателем.
Этап 1.2.4.2.3
Вычтем из .
Этап 1.2.4.2.4
Разделим на .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Найдем вершину .
Этап 4
Этап 4.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 4.2
Подставим значение в формулу.
Этап 4.3
Упростим.
Этап 4.3.1
Объединим и .
Этап 4.3.2
Упростим путем деления чисел.
Этап 4.3.2.1
Разделим на .
Этап 4.3.2.2
Разделим на .
Этап 5
Этап 5.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 5.2
Подставим известные значения и в формулу и упростим.
Этап 6