Алгебра Примеры

Найти квадратное уравнение 1/2 , 1/3
,
Этап 1
и  — два различных вещественных решения квадратного уравнения. Это означает, что и  — множители квадратного уравнения.
Этап 2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Применим свойство дистрибутивности.
Этап 2.3
Применим свойство дистрибутивности.
Этап 3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Умножим на .
Этап 3.1.2
Объединим и .
Этап 3.1.3
Объединим и .
Этап 3.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.1.4.1
Умножим на .
Этап 3.1.4.2
Умножим на .
Этап 3.1.4.3
Умножим на .
Этап 3.1.4.4
Умножим на .
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Умножим на .
Этап 3.4.2
Умножим на .
Этап 3.4.3
Умножим на .
Этап 3.4.4
Умножим на .
Этап 3.5
Объединим числители над общим знаменателем.
Этап 3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.7
Объединим и .
Этап 3.8
Объединим числители над общим знаменателем.
Этап 3.9
Объединим числители над общим знаменателем.
Этап 4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1
Изменим порядок членов.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Применим свойство дистрибутивности.
Этап 6
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Перенесем .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Умножим на .
Этап 6.1.4
Умножим на .
Этап 6.1.5
Умножим на .
Этап 6.1.6
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Разобьем дробь на две дроби.
Этап 8
Разобьем дробь на две дроби.
Этап 9
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.1
Сократим общий множитель.
Этап 9.2
Разделим на .
Этап 10
Вынесем знак минуса перед дробью.
Этап 11
Стандартное квадратное уравнение с использованием заданного набора решений имеет вид: .
Этап 12