Введите задачу...
Алгебра Примеры
,
Этап 1
и — два различных вещественных решения квадратного уравнения. Это означает, что и — множители квадратного уравнения.
Этап 2
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Применим свойство дистрибутивности.
Этап 2.3
Применим свойство дистрибутивности.
Этап 3
Этап 3.1
Упростим каждый член.
Этап 3.1.1
Умножим на .
Этап 3.1.2
Объединим и .
Этап 3.1.3
Объединим и .
Этап 3.1.4
Умножим .
Этап 3.1.4.1
Умножим на .
Этап 3.1.4.2
Умножим на .
Этап 3.1.4.3
Умножим на .
Этап 3.1.4.4
Умножим на .
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.4.1
Умножим на .
Этап 3.4.2
Умножим на .
Этап 3.4.3
Умножим на .
Этап 3.4.4
Умножим на .
Этап 3.5
Объединим числители над общим знаменателем.
Этап 3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.7
Объединим и .
Этап 3.8
Объединим числители над общим знаменателем.
Этап 3.9
Объединим числители над общим знаменателем.
Этап 4
Этап 4.1
Изменим порядок членов.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Применим свойство дистрибутивности.
Этап 6
Этап 6.1
Упростим каждый член.
Этап 6.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.2
Умножим на , сложив экспоненты.
Этап 6.1.2.1
Перенесем .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Умножим на .
Этап 6.1.4
Умножим на .
Этап 6.1.5
Умножим на .
Этап 6.1.6
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Разобьем дробь на две дроби.
Этап 8
Разобьем дробь на две дроби.
Этап 9
Этап 9.1
Сократим общий множитель.
Этап 9.2
Разделим на .
Этап 10
Вынесем знак минуса перед дробью.
Этап 11
Стандартное квадратное уравнение с использованием заданного набора решений имеет вид: .
Этап 12