Алгебра Примеры

Trovare dx/dy x^2+y^2=(2x^2+2y^2-x)^2
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.3
Заменим все вхождения на .
Этап 2.2.2
Перепишем в виде .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.2.1
По правилу суммы производная по имеет вид .
Этап 3.2.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Умножим на .
Этап 3.5
Перепишем в виде .
Этап 3.6
Поскольку является константой относительно , производная по равна .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Умножим на .
Этап 3.9
Поскольку является константой относительно , производная по равна .
Этап 3.10
Перепишем в виде .
Этап 3.11
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.11.1
Применим свойство дистрибутивности.
Этап 3.11.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.11.2.1
Умножим на .
Этап 3.11.2.2
Умножим на .
Этап 3.11.2.3
Умножим на .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 5.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Перепишем.
Этап 5.2.2
Упростим путем добавления нулей.
Этап 5.2.3
Развернем , умножив каждый член в первом выражении на каждый член во втором выражении.
Этап 5.2.4
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.1.1
Перенесем .
Этап 5.2.4.1.1.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.1.2.1
Возведем в степень .
Этап 5.2.4.1.1.2.2
Применим правило степени для объединения показателей.
Этап 5.2.4.1.1.3
Добавим и .
Этап 5.2.4.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.3
Умножим на .
Этап 5.2.4.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.5
Умножим на .
Этап 5.2.4.1.6
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.7
Умножим на .
Этап 5.2.4.1.8
Умножим на .
Этап 5.2.4.1.9
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.10
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.10.1
Перенесем .
Этап 5.2.4.1.10.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.10.2.1
Возведем в степень .
Этап 5.2.4.1.10.2.2
Применим правило степени для объединения показателей.
Этап 5.2.4.1.10.3
Добавим и .
Этап 5.2.4.1.11
Умножим на .
Этап 5.2.4.1.12
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.13
Умножим на .
Этап 5.2.4.1.14
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.14.1
Перенесем .
Этап 5.2.4.1.14.2
Умножим на .
Этап 5.2.4.1.15
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.16
Умножим на .
Этап 5.2.4.1.17
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.18
Умножим на .
Этап 5.2.4.1.19
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.4.1.20
Умножим на .
Этап 5.2.4.2
Вычтем из .
Этап 5.3
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вычтем из обеих частей уравнения.
Этап 5.3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Вычтем из .
Этап 5.3.2.2
Добавим и .
Этап 5.4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Вычтем из обеих частей уравнения.
Этап 5.4.2
Вычтем из обеих частей уравнения.
Этап 5.4.3
Добавим к обеим частям уравнения.
Этап 5.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Вынесем множитель из .
Этап 5.5.2
Вынесем множитель из .
Этап 5.5.3
Вынесем множитель из .
Этап 5.5.4
Вынесем множитель из .
Этап 5.5.5
Вынесем множитель из .
Этап 5.5.6
Вынесем множитель из .
Этап 5.5.7
Вынесем множитель из .
Этап 5.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Разделим каждый член на .
Этап 5.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.2.1.1
Сократим общий множитель.
Этап 5.6.2.1.2
Перепишем это выражение.
Этап 5.6.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.2.2.1
Сократим общий множитель.
Этап 5.6.2.2.2
Разделим на .
Этап 5.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.1.1
Вынесем множитель из .
Этап 5.6.3.1.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.1.2.1
Вынесем множитель из .
Этап 5.6.3.1.1.2.2
Сократим общий множитель.
Этап 5.6.3.1.1.2.3
Перепишем это выражение.
Этап 5.6.3.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.2.1
Вынесем множитель из .
Этап 5.6.3.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.2.2.1
Сократим общий множитель.
Этап 5.6.3.1.2.2.2
Перепишем это выражение.
Этап 5.6.3.1.3
Вынесем знак минуса перед дробью.
Этап 5.6.3.1.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.4.1
Вынесем множитель из .
Этап 5.6.3.1.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.4.2.1
Сократим общий множитель.
Этап 5.6.3.1.4.2.2
Перепишем это выражение.
Этап 5.6.3.1.5
Вынесем знак минуса перед дробью.
Этап 5.6.3.1.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.6.1
Вынесем множитель из .
Этап 5.6.3.1.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.6.2.1
Сократим общий множитель.
Этап 5.6.3.1.6.2.2
Перепишем это выражение.
Этап 5.6.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.6.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.3.3.1
Умножим на .
Этап 5.6.3.3.2
Изменим порядок множителей в .
Этап 5.6.3.4
Объединим числители над общим знаменателем.
Этап 5.6.3.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.6.3.5.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.3.5.1.1
Возведем в степень .
Этап 5.6.3.5.1.2
Вынесем множитель из .
Этап 5.6.3.5.1.3
Вынесем множитель из .
Этап 5.6.3.5.1.4
Вынесем множитель из .
Этап 5.6.3.5.2
Умножим на .
Этап 5.6.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.6.3.7
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.3.7.1
Умножим на .
Этап 5.6.3.7.2
Изменим порядок множителей в .
Этап 5.6.3.8
Объединим числители над общим знаменателем.
Этап 5.6.3.9
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.6.3.9.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.3.9.1.1
Вынесем множитель из .
Этап 5.6.3.9.1.2
Вынесем множитель из .
Этап 5.6.3.9.2
Умножим на .
Этап 5.6.3.10
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.6.3.11
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.3.11.1
Умножим на .
Этап 5.6.3.11.2
Изменим порядок множителей в .
Этап 5.6.3.12
Объединим числители над общим знаменателем.
Этап 5.6.3.13
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.6.3.13.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.3.13.1.1
Вынесем множитель из .
Этап 5.6.3.13.1.2
Вынесем множитель из .
Этап 5.6.3.13.2
Умножим на .
Этап 6
Заменим на .