Алгебра Примеры

Trovare du/dz z=(u^3-v^3)e^(u^3+v^3)
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Чтобы применить цепное правило, зададим как .
Этап 3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3
Заменим все вхождения на .
Этап 3.5
Перепишем в виде .
Этап 3.6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.6.2
Добавим и .
Этап 3.6.3
По правилу суммы производная по имеет вид .
Этап 3.7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Чтобы применить цепное правило, зададим как .
Этап 3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7.3
Заменим все вхождения на .
Этап 3.8
Перепишем в виде .
Этап 3.9
Поскольку является константой относительно , производная относительно равна .
Этап 3.10
Добавим и .
Этап 3.11
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.11.1
Применим свойство дистрибутивности.
Этап 3.11.2
Применим свойство дистрибутивности.
Этап 3.11.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.11.3.1
Применим правило степени для объединения показателей.
Этап 3.11.3.2
Добавим и .
Этап 3.11.3.3
Умножим на .
Этап 3.11.4
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Перепишем уравнение в виде .
Этап 6
Заменим на .