Алгебра Примеры

Определить нули и их кратности (x^2+x-12)^5(x-1+ квадратный корень из 7)^3
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.1.2
Применим правило умножения к .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Приравняем к .
Этап 2.3.2.2
Добавим к обеим частям уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Приравняем к .
Этап 2.4.2.2
Вычтем из обеих частей уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Приравняем к .
Этап 2.5.2.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.5.2.2.1
Добавим к обеим частям уравнения.
Этап 2.5.2.2.2
Вычтем из обеих частей уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно. Кратность корня ― это количество появлений этого корня.
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
Этап 3