Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Перенесем все выражения в левую часть уравнения.
Этап 1.1.1
Вычтем из обеих частей неравенства.
Этап 1.1.2
Добавим к обеим частям неравенства.
Этап 1.2
Упростим .
Этап 1.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.2
Объединим и .
Этап 1.2.3
Объединим числители над общим знаменателем.
Этап 1.2.4
Упростим числитель.
Этап 1.2.4.1
Применим свойство дистрибутивности.
Этап 1.2.4.2
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.4.3
Умножим .
Этап 1.2.4.3.1
Умножим на .
Этап 1.2.4.3.2
Умножим на .
Этап 1.2.4.4
Упростим каждый член.
Этап 1.2.4.4.1
Умножим на , сложив экспоненты.
Этап 1.2.4.4.1.1
Перенесем .
Этап 1.2.4.4.1.2
Умножим на .
Этап 1.2.4.4.2
Умножим на .
Этап 1.2.4.5
Изменим порядок членов.
Этап 1.2.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.6
Объединим числители над общим знаменателем.
Этап 1.2.7
Упростим числитель.
Этап 1.2.7.1
Применим свойство дистрибутивности.
Этап 1.2.7.2
Умножим на .
Этап 1.2.7.3
Умножим на .
Этап 1.2.7.4
Добавим и .
Этап 1.2.7.5
Вычтем из .
Этап 1.2.7.6
Разложим на множители методом группировки
Этап 1.2.7.6.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.2.7.6.1.1
Вынесем множитель из .
Этап 1.2.7.6.1.2
Запишем как плюс
Этап 1.2.7.6.1.3
Применим свойство дистрибутивности.
Этап 1.2.7.6.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.2.7.6.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.7.6.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.7.6.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.8
Вынесем множитель из .
Этап 1.2.9
Перепишем в виде .
Этап 1.2.10
Вынесем множитель из .
Этап 1.2.11
Перепишем в виде .
Этап 1.2.12
Вынесем знак минуса перед дробью.
Этап 1.3
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 1.4
Вычтем из обеих частей уравнения.
Этап 1.5
Разделим каждый член на и упростим.
Этап 1.5.1
Разделим каждый член на .
Этап 1.5.2
Упростим левую часть.
Этап 1.5.2.1
Сократим общий множитель .
Этап 1.5.2.1.1
Сократим общий множитель.
Этап 1.5.2.1.2
Разделим на .
Этап 1.5.3
Упростим правую часть.
Этап 1.5.3.1
Вынесем знак минуса перед дробью.
Этап 1.6
Добавим к обеим частям уравнения.
Этап 1.7
Добавим к обеим частям уравнения.
Этап 1.8
Разделим каждый член на и упростим.
Этап 1.8.1
Разделим каждый член на .
Этап 1.8.2
Упростим левую часть.
Этап 1.8.2.1
Сократим общий множитель .
Этап 1.8.2.1.1
Сократим общий множитель.
Этап 1.8.2.1.2
Разделим на .
Этап 1.9
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 1.10
Объединим решения.
Этап 1.11
Найдем область определения .
Этап 1.11.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.11.2
Решим относительно .
Этап 1.11.2.1
Добавим к обеим частям уравнения.
Этап 1.11.2.2
Разделим каждый член на и упростим.
Этап 1.11.2.2.1
Разделим каждый член на .
Этап 1.11.2.2.2
Упростим левую часть.
Этап 1.11.2.2.2.1
Сократим общий множитель .
Этап 1.11.2.2.2.1.1
Сократим общий множитель.
Этап 1.11.2.2.2.1.2
Разделим на .
Этап 1.11.3
Область определения ― это все значения , при которых выражение определено.
Этап 1.12
Используем каждый корень для создания контрольных интервалов.
Этап 1.13
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 1.13.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.13.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.13.1.2
Заменим на в исходном неравенстве.
Этап 1.13.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 1.13.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.13.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.13.2.2
Заменим на в исходном неравенстве.
Этап 1.13.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 1.13.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.13.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.13.3.2
Заменим на в исходном неравенстве.
Этап 1.13.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 1.13.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.13.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.13.4.2
Заменим на в исходном неравенстве.
Этап 1.13.4.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 1.13.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Этап 1.14
Решение состоит из всех истинных интервалов.
или
или
Этап 2
Используем неравенство для построения формы записи множества.
Этап 3