Алгебра Примеры

Найти точки пересечения y=-x^2+1 y=x^2
Этап 1
Исключим равные части каждого уравнения и объединим.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вычтем из обеих частей уравнения.
Этап 2.1.2
Вычтем из .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Перепишем в виде .
Этап 2.5.2
Любой корень из равен .
Этап 2.5.3
Умножим на .
Этап 2.5.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 2.5.4.1
Умножим на .
Этап 2.5.4.2
Возведем в степень .
Этап 2.5.4.3
Возведем в степень .
Этап 2.5.4.4
Применим правило степени для объединения показателей.
Этап 2.5.4.5
Добавим и .
Этап 2.5.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.5.4.6.1
С помощью запишем в виде .
Этап 2.5.4.6.2
Применим правило степени и перемножим показатели, .
Этап 2.5.4.6.3
Объединим и .
Этап 2.5.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.6.4.1
Сократим общий множитель.
Этап 2.5.4.6.4.2
Перепишем это выражение.
Этап 2.5.4.6.5
Найдем экспоненту.
Этап 2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Вычислим , когда .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо .
Этап 3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Применим правило умножения к .
Этап 3.2.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
С помощью запишем в виде .
Этап 3.2.2.2
Применим правило степени и перемножим показатели, .
Этап 3.2.2.3
Объединим и .
Этап 3.2.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.4.1
Сократим общий множитель.
Этап 3.2.2.4.2
Перепишем это выражение.
Этап 3.2.2.5
Найдем экспоненту.
Этап 3.2.3
Возведем в степень .
Этап 3.2.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Вынесем множитель из .
Этап 3.2.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.2.4.2.1
Вынесем множитель из .
Этап 3.2.4.2.2
Сократим общий множитель.
Этап 3.2.4.2.3
Перепишем это выражение.
Этап 4
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 5
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 6