Введите задачу...
ΠΠ»Π³Π΅Π±ΡΠ° ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ°ΠΏ 1
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π»Ρ .
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 2.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ.
ΠΡΠ°ΠΏ 2.1.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.1.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 2.1.3.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 2.1.3.2
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 2.1.3.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 2.1.3.4
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 2.1.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 2.2.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 2.2.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 2.2.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.2.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 2.2.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 2.2.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.2.5.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π»Ρ .
ΠΡΠ°ΠΏ 4
ΠΡΠ°ΠΏ 4.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 4.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ.
ΠΡΠ°ΠΏ 4.1.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 4.2.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 4.2.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 4.2.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.2.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 4.2.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 4.2.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.2.5.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 5
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π»Ρ .
ΠΡΠ°ΠΏ 6
ΠΡΠ°ΠΏ 6.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 6.1.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 6.1.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 6.1.2.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 6.1.2.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.1.2.3
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 6.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 6.2.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 6.2.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 7
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π»Ρ .
ΠΡΠ°ΠΏ 8
ΠΡΠ°ΠΏ 8.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 8.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ.
ΠΡΠ°ΠΏ 8.1.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 8.1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 8.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 8.2.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 8.2.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 8.2.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 8.2.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 8.2.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 8.2.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 8.2.5.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 9
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π»Ρ .
ΠΡΠ°ΠΏ 10
ΠΡΠ°ΠΏ 10.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 10.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ.
ΠΡΠ°ΠΏ 10.1.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 10.1.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 10.1.3.1
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 10.1.3.2
ΠΡΠ½Π΅ΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΈΠ· .
ΠΡΠ°ΠΏ 10.1.3.3
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 10.1.3.4
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 10.1.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 10.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ»Π΅Π½Ρ Π±Π΅Π· Π² ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 10.2.1
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΊ ΠΎΠ±Π΅ΠΈΠΌ ΡΠ°ΡΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 10.2.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 10.2.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 10.2.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 10.2.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 10.2.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 10.2.5.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 11
ΠΡΠΎ ΡΠ°Π±Π»ΠΈΡΠ° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 12