Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 1.2
Добавим к обеим частям неравенства.
Этап 1.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 1.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 1.5
Добавим к обеим частям неравенства.
Этап 1.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 1.7
Запишем в виде кусочной функции.
Этап 1.8
Упростим .
Этап 1.8.1
Применим свойство дистрибутивности.
Этап 1.8.2
Умножим .
Этап 1.8.2.1
Умножим на .
Этап 1.8.2.2
Умножим на .
Этап 2
Этап 2.1
Перенесем все члены без в правую часть неравенства.
Этап 2.1.1
Добавим к обеим частям неравенства.
Этап 2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.1.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 2.1.3.1
Умножим на .
Этап 2.1.3.2
Умножим на .
Этап 2.1.4
Объединим числители над общим знаменателем.
Этап 2.1.5
Добавим и .
Этап 2.1.6
Сократим общий множитель и .
Этап 2.1.6.1
Вынесем множитель из .
Этап 2.1.6.2
Сократим общие множители.
Этап 2.1.6.2.1
Вынесем множитель из .
Этап 2.1.6.2.2
Сократим общий множитель.
Этап 2.1.6.2.3
Перепишем это выражение.
Этап 2.2
Найдем пересечение и .
Этап 3
Этап 3.1
Решим относительно .
Этап 3.1.1
Перенесем все члены без в правую часть неравенства.
Этап 3.1.1.1
Вычтем из обеих частей неравенства.
Этап 3.1.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.1.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.1.1.3.1
Умножим на .
Этап 3.1.1.3.2
Умножим на .
Этап 3.1.1.4
Объединим числители над общим знаменателем.
Этап 3.1.1.5
Вычтем из .
Этап 3.1.1.6
Сократим общий множитель и .
Этап 3.1.1.6.1
Вынесем множитель из .
Этап 3.1.1.6.2
Сократим общие множители.
Этап 3.1.1.6.2.1
Вынесем множитель из .
Этап 3.1.1.6.2.2
Сократим общий множитель.
Этап 3.1.1.6.2.3
Перепишем это выражение.
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Вынесем знак минуса из знаменателя .
Этап 3.1.2.3.2
Перепишем в виде .
Этап 3.2
Найдем пересечение и .
Этап 4
Найдем объединение решений.
Этап 5
Преобразуем неравенство в интервальное представление.
Этап 6