Алгебра Примеры

Решить через дискриминант 132=1/2*(x(2x+2))
Этап 1
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.1.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.1.1.2.2
Перенесем влево от .
Этап 1.1.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Перенесем .
Этап 1.1.1.2.2
Умножим на .
Этап 1.1.1.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Применим свойство дистрибутивности.
Этап 1.1.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.2.1
Вынесем множитель из .
Этап 1.1.1.3.2.2
Сократим общий множитель.
Этап 1.1.1.3.2.3
Перепишем это выражение.
Этап 1.1.1.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.3.1
Вынесем множитель из .
Этап 1.1.1.3.3.2
Сократим общий множитель.
Этап 1.1.1.3.3.3
Перепишем это выражение.
Этап 1.2
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.2
Вычтем из обеих частей уравнения.
Этап 2
Используем формулу для нахождения корней квадратного уравнения.
Этап 3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим на .
Этап 4.1.3
Добавим и .
Этап 4.1.4
Перепишем в виде .
Этап 4.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2
Умножим на .
Этап 4.3
Вынесем знак минуса перед дробью.
Этап 5
Окончательный ответ является комбинацией обоих решений.