Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Вынесем члены из-под знака корня.
Этап 3
С помощью запишем в виде .
Этап 4
Перепишем в виде .
Этап 5
Пусть . Подставим вместо для всех.
Этап 6
Этап 6.1
Изменим порядок членов.
Этап 6.2
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Запишем как плюс
Этап 6.2.3
Применим свойство дистрибутивности.
Этап 6.3
Вынесем наибольший общий делитель из каждой группы.
Этап 6.3.1
Сгруппируем первые два члена и последние два члена.
Этап 6.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.4
Разложим многочлен, вынеся наибольший общий делитель .
Этап 7
Заменим все вхождения на .
Этап 8
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 9
Этап 9.1
Приравняем к .
Этап 9.2
Решим относительно .
Этап 9.2.1
Вычтем из обеих частей уравнения.
Этап 9.2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 9.2.3
Упростим показатель степени.
Этап 9.2.3.1
Упростим левую часть.
Этап 9.2.3.1.1
Упростим .
Этап 9.2.3.1.1.1
Применим правило умножения к .
Этап 9.2.3.1.1.2
Возведем в степень .
Этап 9.2.3.1.1.3
Умножим на .
Этап 9.2.3.1.1.4
Перемножим экспоненты в .
Этап 9.2.3.1.1.4.1
Применим правило степени и перемножим показатели, .
Этап 9.2.3.1.1.4.2
Сократим общий множитель .
Этап 9.2.3.1.1.4.2.1
Сократим общий множитель.
Этап 9.2.3.1.1.4.2.2
Перепишем это выражение.
Этап 9.2.3.1.1.5
Упростим.
Этап 9.2.3.2
Упростим правую часть.
Этап 9.2.3.2.1
Возведем в степень .
Этап 10
Этап 10.1
Приравняем к .
Этап 10.2
Решим относительно .
Этап 10.2.1
Добавим к обеим частям уравнения.
Этап 10.2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 10.2.3
Упростим показатель степени.
Этап 10.2.3.1
Упростим левую часть.
Этап 10.2.3.1.1
Упростим .
Этап 10.2.3.1.1.1
Перемножим экспоненты в .
Этап 10.2.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 10.2.3.1.1.1.2
Сократим общий множитель .
Этап 10.2.3.1.1.1.2.1
Сократим общий множитель.
Этап 10.2.3.1.1.1.2.2
Перепишем это выражение.
Этап 10.2.3.1.1.2
Упростим.
Этап 10.2.3.2
Упростим правую часть.
Этап 10.2.3.2.1
Возведем в степень .
Этап 11
Окончательным решением являются все значения, при которых верно.