Введите задачу...
Алгебра Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Перепишем в виде .
Этап 3
Пусть . Подставим вместо для всех.
Этап 4
Этап 4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Запишем как плюс
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Заменим все вхождения на .
Этап 6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Этап 7.2.1
Добавим к обеим частям уравнения.
Этап 7.2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 7.2.3
Упростим показатель степени.
Этап 7.2.3.1
Упростим левую часть.
Этап 7.2.3.1.1
Упростим .
Этап 7.2.3.1.1.1
Применим правило умножения к .
Этап 7.2.3.1.1.2
Возведем в степень .
Этап 7.2.3.1.1.3
Перемножим экспоненты в .
Этап 7.2.3.1.1.3.1
Применим правило степени и перемножим показатели, .
Этап 7.2.3.1.1.3.2
Сократим общий множитель .
Этап 7.2.3.1.1.3.2.1
Сократим общий множитель.
Этап 7.2.3.1.1.3.2.2
Перепишем это выражение.
Этап 7.2.3.1.1.4
Упростим.
Этап 7.2.3.2
Упростим правую часть.
Этап 7.2.3.2.1
Возведем в степень .
Этап 7.2.4
Разделим каждый член на и упростим.
Этап 7.2.4.1
Разделим каждый член на .
Этап 7.2.4.2
Упростим левую часть.
Этап 7.2.4.2.1
Сократим общий множитель .
Этап 7.2.4.2.1.1
Сократим общий множитель.
Этап 7.2.4.2.1.2
Разделим на .
Этап 8
Этап 8.1
Приравняем к .
Этап 8.2
Решим относительно .
Этап 8.2.1
Добавим к обеим частям уравнения.
Этап 8.2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 8.2.3
Упростим показатель степени.
Этап 8.2.3.1
Упростим левую часть.
Этап 8.2.3.1.1
Упростим .
Этап 8.2.3.1.1.1
Перемножим экспоненты в .
Этап 8.2.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 8.2.3.1.1.1.2
Сократим общий множитель .
Этап 8.2.3.1.1.1.2.1
Сократим общий множитель.
Этап 8.2.3.1.1.1.2.2
Перепишем это выражение.
Этап 8.2.3.1.1.2
Упростим.
Этап 8.2.3.2
Упростим правую часть.
Этап 8.2.3.2.1
Возведем в степень .
Этап 9
Окончательным решением являются все значения, при которых верно.