Введите задачу...
Алгебра Примеры
Этап 1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.4
Упростим .
Этап 3.4.1
Перепишем в виде .
Этап 3.4.2
Упростим числитель.
Этап 3.4.2.1
Вынесем за скобки.
Этап 3.4.2.2
Вынесем члены из-под знака корня.
Этап 3.4.3
Упростим знаменатель.
Этап 3.4.3.1
Перепишем в виде .
Этап 3.4.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: