Алгебра Примеры

Risolvere per x логарифм по основанию 2 от x+ логарифм по основанию 2 от x-1 = логарифм по основанию 2 от 2
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Умножим на .
Этап 1.2.2.2
Перенесем влево от .
Этап 1.3
Перепишем в виде .
Этап 2
Логарифм по основанию равен .
Этап 3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Добавим к обеим частям уравнения.
Этап 4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.
Этап 5
Исключим решения, которые не делают истинным.