Введите задачу...
Алгебра Примеры
Этап 1
Перепишем, используя свойство коммутативности умножения.
Этап 2
Этап 2.1
Перенесем .
Этап 2.2
Умножим на .
Этап 2.2.1
Возведем в степень .
Этап 2.2.2
Применим правило степени для объединения показателей.
Этап 2.3
Добавим и .
Этап 3
Умножим на .
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.2
Вынесем множитель из .
Этап 4.3
Вынесем множитель из .
Этап 5
Перепишем в виде .
Этап 6
Перепишем в виде .
Этап 7
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 8
Этап 8.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 8.1.1
Вынесем множитель из .
Этап 8.1.2
Запишем как плюс
Этап 8.1.3
Применим свойство дистрибутивности.
Этап 8.2
Вынесем наибольший общий делитель из каждой группы.
Этап 8.2.1
Сгруппируем первые два члена и последние два члена.
Этап 8.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 8.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 9
Этап 9.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 9.2
Запишем разложение на множители, используя данные целые числа.