Алгебра Примеры

Решить с помощью разложения на множители x^4-18x^2+81=0
Этап 1
Перепишем в виде .
Этап 2
Пусть . Подставим вместо для всех.
Этап 3
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем в виде .
Этап 3.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 3.3
Перепишем многочлен.
Этап 3.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4
Заменим все вхождения на .
Этап 5
Перепишем в виде .
Этап 6
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 7
Применим правило умножения к .
Этап 8
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 9
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Приравняем к .
Этап 9.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Приравняем к .
Этап 9.2.2
Вычтем из обеих частей уравнения.
Этап 10
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Приравняем к .
Этап 10.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.2.1
Приравняем к .
Этап 10.2.2
Добавим к обеим частям уравнения.
Этап 11
Окончательным решением являются все значения, при которых верно.