Алгебра Примеры

Risolvere per x e^x-3=-e^(-x)
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Перепишем в виде степенного выражения.
Этап 3
Подставим вместо .
Этап 4
Перепишем выражение, используя правило отрицательных степеней .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.1.2
НОК единицы и любого выражения есть это выражение.
Этап 5.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим каждый член на .
Этап 5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Умножим на .
Этап 5.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.2.1
Сократим общий множитель.
Этап 5.2.2.1.2.2
Перепишем это выражение.
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Умножим на .
Этап 5.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.3.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.1
Возведем в степень .
Этап 5.3.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.2.1
Умножим на .
Этап 5.3.3.1.2.2
Умножим на .
Этап 5.3.3.1.3
Вычтем из .
Этап 5.3.3.2
Умножим на .
Этап 5.3.4
Окончательный ответ является комбинацией обоих решений.
Этап 6
Подставим вместо в .
Этап 7
Решим .
Нажмите для увеличения количества этапов...
Этап 7.1
Перепишем уравнение в виде .
Этап 7.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 7.3
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Развернем , вынося из логарифма.
Этап 7.3.2
Натуральный логарифм равен .
Этап 7.3.3
Умножим на .
Этап 8
Подставим вместо в .
Этап 9
Решим .
Нажмите для увеличения количества этапов...
Этап 9.1
Перепишем уравнение в виде .
Этап 9.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 9.3
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Развернем , вынося из логарифма.
Этап 9.3.2
Натуральный логарифм равен .
Этап 9.3.3
Умножим на .
Этап 10
Перечислим решения, делающие уравнение истинным.
Этап 11
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: