Введите задачу...
Алгебра Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Перепишем в виде .
Этап 2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.1.2.1
Применим свойство дистрибутивности.
Этап 2.1.2.2
Применим свойство дистрибутивности.
Этап 2.1.2.3
Применим свойство дистрибутивности.
Этап 2.1.3
Упростим и объединим подобные члены.
Этап 2.1.3.1
Упростим каждый член.
Этап 2.1.3.1.1
Умножим на , сложив экспоненты.
Этап 2.1.3.1.1.1
Применим правило степени для объединения показателей.
Этап 2.1.3.1.1.2
Добавим и .
Этап 2.1.3.1.2
Перенесем влево от .
Этап 2.1.3.1.3
Умножим на .
Этап 2.1.3.2
Вычтем из .
Этап 2.1.4
Применим свойство дистрибутивности.
Этап 2.1.5
Умножим на .
Этап 2.2
Вычтем из .
Этап 2.3
Добавим и .
Этап 2.4
Объединим противоположные члены в .
Этап 2.4.1
Вычтем из .
Этап 2.4.2
Добавим и .
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5.2.2
Упростим .
Этап 5.2.2.1
Перепишем в виде .
Этап 5.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2.2.3
Плюс или минус равно .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 6.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: