Введите задачу...
Алгебра Примеры
Этап 1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Умножим обе части на .
Этап 4.3
Упростим.
Этап 4.3.1
Упростим левую часть.
Этап 4.3.1.1
Сократим общий множитель .
Этап 4.3.1.1.1
Сократим общий множитель.
Этап 4.3.1.1.2
Перепишем это выражение.
Этап 4.3.2
Упростим правую часть.
Этап 4.3.2.1
Перенесем влево от .
Этап 4.4
Решим относительно .
Этап 4.4.1
Вычтем из обеих частей уравнения.
Этап 4.4.2
Разделим каждый член на и упростим.
Этап 4.4.2.1
Разделим каждый член на .
Этап 4.4.2.2
Упростим левую часть.
Этап 4.4.2.2.1
Сократим общий множитель .
Этап 4.4.2.2.1.1
Сократим общий множитель.
Этап 4.4.2.2.1.2
Разделим на .
Этап 4.4.2.3
Упростим правую часть.
Этап 4.4.2.3.1
Вынесем знак минуса перед дробью.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: