Алгебра Примеры

Risolvere per x логарифм по основанию 7 от 3-4x = логарифм по основанию 7 от x/3
Этап 1
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим обе части на .
Этап 2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Применим свойство дистрибутивности.
Этап 2.2.1.1.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.2.1
Умножим на .
Этап 2.2.1.1.2.2
Умножим на .
Этап 2.2.1.1.2.3
Изменим порядок и .
Этап 2.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Сократим общий множитель.
Этап 2.2.2.1.2
Перепишем это выражение.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Вычтем из обеих частей уравнения.
Этап 2.3.1.2
Вычтем из .
Этап 2.3.2
Вычтем из обеих частей уравнения.
Этап 2.3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим каждый член на .
Этап 2.3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1.1
Сократим общий множитель.
Этап 2.3.3.2.1.2
Разделим на .
Этап 2.3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: