Алгебра Примеры

Определить экспоненциальную функцию (3,-1)
Этап 1
Чтобы найти экспоненциальную функцию, , график которой проходит через заданную точку, приравняем функцию значению , в заданной точке, а приравняем значению , в заданной точке.
Этап 2
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Добавим к обеим частям уравнения.
Этап 2.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем в виде .
Этап 2.3.2
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу суммы кубов, , где и .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Единица в любой степени равна единице.
Этап 2.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.6.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.6.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.2.3.1.1
Возведем в степень .
Этап 2.6.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.2.3.1.2.1
Умножим на .
Этап 2.6.2.3.1.2.2
Умножим на .
Этап 2.6.2.3.1.3
Вычтем из .
Этап 2.6.2.3.1.4
Перепишем в виде .
Этап 2.6.2.3.1.5
Перепишем в виде .
Этап 2.6.2.3.1.6
Перепишем в виде .
Этап 2.6.2.3.2
Умножим на .
Этап 2.6.2.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.6.2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.2.4.1.1
Возведем в степень .
Этап 2.6.2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.2.4.1.2.1
Умножим на .
Этап 2.6.2.4.1.2.2
Умножим на .
Этап 2.6.2.4.1.3
Вычтем из .
Этап 2.6.2.4.1.4
Перепишем в виде .
Этап 2.6.2.4.1.5
Перепишем в виде .
Этап 2.6.2.4.1.6
Перепишем в виде .
Этап 2.6.2.4.2
Умножим на .
Этап 2.6.2.4.3
Заменим на .
Этап 2.6.2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.6.2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.2.5.1.1
Возведем в степень .
Этап 2.6.2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.2.5.1.2.1
Умножим на .
Этап 2.6.2.5.1.2.2
Умножим на .
Этап 2.6.2.5.1.3
Вычтем из .
Этап 2.6.2.5.1.4
Перепишем в виде .
Этап 2.6.2.5.1.5
Перепишем в виде .
Этап 2.6.2.5.1.6
Перепишем в виде .
Этап 2.6.2.5.2
Умножим на .
Этап 2.6.2.5.3
Заменим на .
Этап 2.6.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 2.7
Окончательным решением являются все значения, при которых верно.
Этап 2.8
Избавимся от всех величин, содержащих мнимые компоненты.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Мнимые компоненты отсутствуют. Добавим к окончательному ответу.
 — вещественное число
Этап 2.8.2
Буква представляет мнимую часть и не является вещественным числом. Не следует добавлять к окончательному ответу.
 — не вещественное число
Этап 2.8.3
Буква представляет мнимую часть и не является вещественным числом. Не следует добавлять к окончательному ответу.
 — не вещественное число
Этап 2.8.4
Окончательный ответ ― это список значений, не содержащих мнимых компонентов.
Этап 3
Подставим каждое значение в функцию , чтобы найти каждую возможную экспоненциальную функцию.