Алгебра Примеры

Risolvere per x x^2+(2x+4)^2=(2x+6)^2
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Применим свойство дистрибутивности.
Этап 1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.3.1.2.1
Перенесем .
Этап 1.3.1.2.2
Умножим на .
Этап 1.3.1.3
Умножим на .
Этап 1.3.1.4
Умножим на .
Этап 1.3.1.5
Умножим на .
Этап 1.3.1.6
Умножим на .
Этап 1.3.2
Добавим и .
Этап 2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем в виде .
Этап 2.3.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Применим свойство дистрибутивности.
Этап 2.3.2.2
Применим свойство дистрибутивности.
Этап 2.3.2.3
Применим свойство дистрибутивности.
Этап 2.3.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.2.1
Перенесем .
Этап 2.3.3.1.2.2
Умножим на .
Этап 2.3.3.1.3
Умножим на .
Этап 2.3.3.1.4
Умножим на .
Этап 2.3.3.1.5
Умножим на .
Этап 2.3.3.1.6
Умножим на .
Этап 2.3.3.2
Добавим и .
Этап 2.4
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Вычтем из .
Этап 2.4.2
Добавим и .
Этап 2.5
Вычтем из .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Вычтем из .
Этап 5
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.2
Запишем разложение на множители, используя данные целые числа.
Этап 6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Приравняем к .
Этап 8.2
Вычтем из обеих частей уравнения.
Этап 9
Окончательным решением являются все значения, при которых верно.