Введите задачу...
Алгебра Примеры
Этап 1
Найдем общий множитель , который присутствует в каждом члене.
Этап 2
Подставим вместо .
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к .
Этап 3.4
Приравняем к , затем решим относительно .
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Этап 3.4.2.1
Добавим к обеим частям уравнения.
Этап 3.4.2.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 3.4.2.3
Упростим показатель степени.
Этап 3.4.2.3.1
Упростим левую часть.
Этап 3.4.2.3.1.1
Упростим .
Этап 3.4.2.3.1.1.1
Перемножим экспоненты в .
Этап 3.4.2.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.4.2.3.1.1.1.2
Сократим общий множитель .
Этап 3.4.2.3.1.1.1.2.1
Сократим общий множитель.
Этап 3.4.2.3.1.1.1.2.2
Перепишем это выражение.
Этап 3.4.2.3.1.1.2
Упростим.
Этап 3.4.2.3.2
Упростим правую часть.
Этап 3.4.2.3.2.1
Возведем в степень .
Этап 3.5
Окончательным решением являются все значения, при которых верно.
Этап 4
Подставим вместо .
Этап 5
Этап 5.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2
Упростим .
Этап 5.2.1
Перепишем в виде .
Этап 5.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 6
Этап 6.1
Вычтем из обеих частей уравнения.
Этап 6.2
Разложим левую часть уравнения на множители.
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу разности кубов, , где и .
Этап 6.2.3
Упростим.
Этап 6.2.3.1
Перенесем влево от .
Этап 6.2.3.2
Возведем в степень .
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к , затем решим относительно .
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Добавим к обеим частям уравнения.
Этап 6.5
Приравняем к , затем решим относительно .
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Решим относительно .
Этап 6.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 6.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6.5.2.3
Упростим.
Этап 6.5.2.3.1
Упростим числитель.
Этап 6.5.2.3.1.1
Возведем в степень .
Этап 6.5.2.3.1.2
Умножим .
Этап 6.5.2.3.1.2.1
Умножим на .
Этап 6.5.2.3.1.2.2
Умножим на .
Этап 6.5.2.3.1.3
Вычтем из .
Этап 6.5.2.3.1.4
Перепишем в виде .
Этап 6.5.2.3.1.5
Перепишем в виде .
Этап 6.5.2.3.1.6
Перепишем в виде .
Этап 6.5.2.3.1.7
Перепишем в виде .
Этап 6.5.2.3.1.7.1
Вынесем множитель из .
Этап 6.5.2.3.1.7.2
Перепишем в виде .
Этап 6.5.2.3.1.8
Вынесем члены из-под знака корня.
Этап 6.5.2.3.1.9
Перенесем влево от .
Этап 6.5.2.3.2
Умножим на .
Этап 6.5.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 6.6
Окончательным решением являются все значения, при которых верно.
Этап 7
Перечислим все решения.