Введите задачу...
Алгебра Примеры
Этап 1
Перенесем в числитель, используя правило отрицательных степеней .
Этап 2
Этап 2.1
Применим правило степени для объединения показателей.
Этап 2.2
Добавим и .
Этап 3
Применим правило степени для объединения показателей.
Этап 4
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 5
Этап 5.1
Перенесем все члены с в левую часть уравнения.
Этап 5.1.1
Вычтем из обеих частей уравнения.
Этап 5.1.2
Вычтем из .
Этап 5.2
Перенесем все члены без в правую часть уравнения.
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Добавим и .
Этап 5.3
Разделим каждый член на и упростим.
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Сократим общий множитель .
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Разделим на .
Этап 5.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.5
Упростим .
Этап 5.5.1
Перепишем в виде .
Этап 5.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.