Алгебра Примеры

Этап 1
Перепишем, используя свойство коммутативности умножения.
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.2.2.2.2
Разделим на .
Этап 6.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.1
Вынесем знак минуса из знаменателя .
Этап 6.2.2.3.2
Перепишем в виде .
Этап 6.2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Окончательным решением являются все значения, при которых верно.