Алгебра Примеры

Risolvere per x 2^x+2^(-x)=5/2
Этап 1
Перепишем в виде степенного выражения.
Этап 2
Подставим вместо .
Этап 3
Перепишем выражение, используя правило отрицательных степеней .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 4.1.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 4.1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 4.1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 4.1.5
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 4.1.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 4.1.7
Множителем является само значение .
встречается раз.
Этап 4.1.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 4.1.9
НОК представляет собой произведение числовой части и переменной части.
Этап 4.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.2.1
Перенесем .
Этап 4.2.2.1.2.2
Умножим на .
Этап 4.2.2.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2.1.4
Объединим и .
Этап 4.2.2.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.5.1
Сократим общий множитель.
Этап 4.2.2.1.5.2
Перепишем это выражение.
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1.1
Вынесем множитель из .
Этап 4.2.3.1.2
Сократим общий множитель.
Этап 4.2.3.1.3
Перепишем это выражение.
Этап 4.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Изменим порядок членов.
Этап 4.3.2.2
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Вынесем множитель из .
Этап 4.3.2.2.2
Запишем как плюс
Этап 4.3.2.2.3
Применим свойство дистрибутивности.
Этап 4.3.2.3
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.3.2.3.1
Сгруппируем первые два члена и последние два члена.
Этап 4.3.2.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3.2.4
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Приравняем к .
Этап 4.3.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.4.2.1
Добавим к обеим частям уравнения.
Этап 4.3.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.4.2.2.1
Разделим каждый член на .
Этап 4.3.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.4.2.2.2.1.1
Сократим общий множитель.
Этап 4.3.4.2.2.2.1.2
Разделим на .
Этап 4.3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.5.1
Приравняем к .
Этап 4.3.5.2
Добавим к обеим частям уравнения.
Этап 4.3.6
Окончательным решением являются все значения, при которых верно.
Этап 5
Подставим вместо в .
Этап 6
Решим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Возведем в степень .
Этап 6.3
Перенесем в числитель, используя правило отрицательных степеней .
Этап 6.4
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 7
Подставим вместо в .
Этап 8
Решим .
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем уравнение в виде .
Этап 8.2
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 8.3
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 9
Перечислим решения, делающие уравнение истинным.