Введите задачу...
Алгебра Примеры
Этап 1
Объединим и .
Этап 2
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Объединим и .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим числитель.
Этап 2.5.1
Умножим на .
Этап 2.5.2
Вычтем из .
Этап 3
Этап 3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 3.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.5
Поскольку не имеет множителей, кроме и .
— простое число
Этап 3.6
У есть множители: и .
Этап 3.7
Умножим на .
Этап 3.8
Множителем является само значение .
встречается раз.
Этап 3.9
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.10
НОК представляет собой произведение числовой части и переменной части.
Этап 4
Этап 4.1
Умножим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2
Умножим .
Этап 4.2.2.1
Объединим и .
Этап 4.2.2.2
Умножим на .
Этап 4.2.3
Сократим общий множитель .
Этап 4.2.3.1
Сократим общий множитель.
Этап 4.2.3.2
Перепишем это выражение.
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Упростим каждый член.
Этап 4.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.3.1.2
Сократим общий множитель .
Этап 4.3.1.2.1
Вынесем множитель из .
Этап 4.3.1.2.2
Сократим общий множитель.
Этап 4.3.1.2.3
Перепишем это выражение.
Этап 4.3.1.3
Умножим на .
Этап 4.3.1.4
Умножим на , сложив экспоненты.
Этап 4.3.1.4.1
Перенесем .
Этап 4.3.1.4.2
Умножим на .
Этап 4.3.1.5
Сократим общий множитель .
Этап 4.3.1.5.1
Вынесем множитель из .
Этап 4.3.1.5.2
Сократим общий множитель.
Этап 4.3.1.5.3
Перепишем это выражение.
Этап 5
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.5
Упростим.
Этап 5.5.1
Упростим числитель.
Этап 5.5.1.1
Единица в любой степени равна единице.
Этап 5.5.1.2
Умножим .
Этап 5.5.1.2.1
Умножим на .
Этап 5.5.1.2.2
Умножим на .
Этап 5.5.1.3
Добавим и .
Этап 5.5.2
Умножим на .
Этап 5.6
Окончательный ответ является комбинацией обоих решений.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: