Алгебра Примеры

Вычислить 1/x+1/(x-2)=1/4
Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Поскольку содержит как числа, так и переменные, для нахождения наименьшего общего кратного требуется четыре этапа. Найдем наименьшее общее кратное для числовой, переменной и составной переменной частей. Затем перемножим их.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.5
У есть множители: и .
Этап 1.6
Умножим на .
Этап 1.7
Множителем является само значение .
встречается раз.
Этап 1.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.9
Множителем является само значение .
встречается раз.
Этап 1.10
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.11
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.2
Объединим и .
Этап 2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.1
Сократим общий множитель.
Этап 2.2.1.3.2
Перепишем это выражение.
Этап 2.2.1.4
Применим свойство дистрибутивности.
Этап 2.2.1.5
Умножим на .
Этап 2.2.1.6
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.7
Объединим и .
Этап 2.2.1.8
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.8.1
Вынесем множитель из .
Этап 2.2.1.8.2
Сократим общий множитель.
Этап 2.2.1.8.3
Перепишем это выражение.
Этап 2.2.2
Добавим и .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Вынесем множитель из .
Этап 2.3.1.2
Сократим общий множитель.
Этап 2.3.1.3
Перепишем это выражение.
Этап 2.3.2
Применим свойство дистрибутивности.
Этап 2.3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Перенесем влево от .
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Вычтем из .
Этап 3.3
Добавим к обеим частям уравнения.
Этап 3.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.6.1.1
Возведем в степень .
Этап 3.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.6.1.2.1
Умножим на .
Этап 3.6.1.2.2
Умножим на .
Этап 3.6.1.3
Вычтем из .
Этап 3.6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.6.1.4.1
Вынесем множитель из .
Этап 3.6.1.4.2
Перепишем в виде .
Этап 3.6.1.5
Вынесем члены из-под знака корня.
Этап 3.6.2
Умножим на .
Этап 3.6.3
Упростим .
Этап 3.7
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.7.1.1
Возведем в степень .
Этап 3.7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.7.1.2.1
Умножим на .
Этап 3.7.1.2.2
Умножим на .
Этап 3.7.1.3
Вычтем из .
Этап 3.7.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.7.1.4.1
Вынесем множитель из .
Этап 3.7.1.4.2
Перепишем в виде .
Этап 3.7.1.5
Вынесем члены из-под знака корня.
Этап 3.7.2
Умножим на .
Этап 3.7.3
Упростим .
Этап 3.7.4
Заменим на .
Этап 3.8
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 3.8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.8.1.1
Возведем в степень .
Этап 3.8.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.8.1.2.1
Умножим на .
Этап 3.8.1.2.2
Умножим на .
Этап 3.8.1.3
Вычтем из .
Этап 3.8.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.8.1.4.1
Вынесем множитель из .
Этап 3.8.1.4.2
Перепишем в виде .
Этап 3.8.1.5
Вынесем члены из-под знака корня.
Этап 3.8.2
Умножим на .
Этап 3.8.3
Упростим .
Этап 3.8.4
Заменим на .
Этап 3.9
Окончательный ответ является комбинацией обоих решений.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: